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LETTER TO THE EDITOR 

Multi-branch entrainment and multi-peaked 
order-functions in a phase model of limit-cycle oscillators 
with uniform all-to-all coupling 

Hiroaki Daido 
Depamnent of Physics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 
804, Japan 

Received 28 October 1994 

Abstract, A pecdiar type of mutual entrainment is found numerically in a phase model of a 
large population of limit-cycle oscillators with uniform all-to-all coupling strongly modulated by 
higher harmonics. in which more than one b m c h  of mutually, phase-locked oscillators exists, 
accompanied by a multi-peaked order function. For system size N, at least e'" different enhained 
p e s  are likely to coexist with almost identical order functions. Also discussed is how to extend 
the order-function theory for dealing with such a phenomenon. 

Large populations of coupled limit-cycle oscillators have been attracting much attention 
in diverse fields of science [I, 21. From the point of view of dynamical systems theory, 
they provide an important category of large degrees of freedom systems that are now most 
intensively investigated in the area of nonlinear dynamics. On the other hand, assemblies 
of such oscillators can be viewed as a new type of co-operative systems exhibiting a 
phase-transition-like phenomenon, that is, macroscopic mutual entrainment in which a finite 
portion of element oscillators get phase-locked  with^ one another, acquiring a common 
frequency. With a seemingly close analogy between that phenomenon and conventional 
phase transitions,  it^ is an interesting subject to elucidate how far the analogy goes and 
where it breaks down. In theoretical studies of such systems, so-called phase models with 
uniform all-to-all coupling are often employed, which are of the form 

€ * 
N i=l 

d B j / d t = f i j + - ~ k ( B ; - & )  , ( j = 1 ,  ..., N )  

where N ( >  1) is the system size, 8, the phase variable (divided by 2n) of the j th  oscillator, 
fij its intrinsic frequency, whose dispersal within the population is hereafter expressed by 
a density f(fi), E the control parameter, and h(B) = h(B + 1) the,coupling function. This 
type of model can be derived from underlying equations with an asymptotic analysis when 
coupling as well is when the frequency dispersion are weak, and have been investigated 
so far mostly for a particular case of k(B) = sin2n.9, taken up first by Kuramoto two 
decades ago [3], which is because in that case, the model becomes not only, simple but 
also analytically tractable (see, for example, [2,4, 51). Recently, however, a theory capable 
of dealing with generic coupling functions has been proposed [6], producing a number of 
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fundamental results applicable to generic h(6) and f(Q) [&SI. This theory is based on a 
concept of an orderfunction (OF), H ( 0 ) ,  defined by 

m 

H ( 0 ) = -  hkZke-”“’ (2) 
~~ k=-m 

where i = d0 h(0)e-2”ike; Zk are 
limits for t + CO of N-’ E:=, elnik(’J-ncr), in which Qe is the frequency of entrainment. 
A self-consistent functional equation of H ( 0 )  then follows, giving, in principle, all the 
information about the asymptotic state of the system as i + CO; indeed, its numerical 
solutions lead to excellent agreement with simulation results [6, 81. A new solvable model 
has also been discovered on the basis of that equation [9]. In terms of this equation, the 
collective behaviour of oscillators corresponds to the bifurcation of a non-trivial solution 
from the trivial, which has been studied analytically in detail very recently, leading to, for 
example, a critical point formula to locate the onset of mutual entrainment [7] and generic 
scaling laws of order parameters and other quantities [8]. 

Yet the order-function theory may need to be further generalized since in the derivation 
of its equation, H(6)  is assumed to possess only one pair of minimum and maximums in 
a unit interval [6]; as can be seen from (Z), this assumption should be valid for normal 
h(0) such that its higher harmonic components are of moderate magnitude, but may not be 
correct otherwise. This paper demonstrates numerically that there is indeed such a case that 
the OF breaks the assumption by taking a multi-peaked shape; here, we focus on the case 
of f(Q) = (O.4/ir)(Q2 + (0.4)’)-’ and 

h(0) =~sin2n0 + 0 . 2 ~ 0 ~ 2 ~ 0  - 0.3sio4~r0 + 0.6cos4n0 + 0.7sin6a0 - 0 . 4 ~ 0 ~ 6 ~ 0  

and h i  are Fourier.Zmponenti of h(0) : hk = 

(3) 

although similar results were obtained for some other cases as well. The coupling function, 
which already appeared in a previous paper 171, has a portrait as displayed in figure 1; 
the bumpy shape is due to the non-fundamental harmonics with fairly large magnitudes. 
Although it is not clear at the moment to what extent such a strongly modulated coupling 
can be relevant to real coupled-oscillator systems studied in laboratories or existing in nature, 
we will see below that it can generate a curious mode of mutual entrainment not known 

X Eyre 1. Portrait of (3). 
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Figure 2. Portraits of order functidns found by 
simulation for three different initial conditions. The 
methd used to compute them is described in [SI. 

0.5 Figure 3. Order function obtained theoretically for the 
st" E as in figure 2. 

-0.5 0 
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before which is characterized by a multi-peaked OF. A sketch is also given of how to extend 
the theory in order to cope with such an 'abnormal' case. 

Numerical integration of (1) wasperformed for N = 4000 by means of the Euler scheme 
with a time step of 0.01, starting from an initial condition prepared by a uniform random 
number generator. Some portraits of the OF obtained in this way for three different initial 
conditions are displayed in figure 2, where E is 0.96. Remarkably, all of them have three 
pairs of minimum and maximums in the interval of length I ,  looking qualitatively similar to 
the portrait of h(B) presented above. Although those OFS are roughly of the same shape, it 
is evident that there exist slight differences. Figure 3 shows H ( B )  obtained by numerically 
solving the theoretical functional equation for the same h(@ f (a) and E ,  which clearly 
disagrees with the results of numerical simulation. The reason for this would be either 
that mutual entrainment corresponding to the theoretical OF is unstable for the value of the 
control parameter or that the basin of attraction of such a state is too small to be easily 
detected. At any rate, the bifurcation theory [SI reveals that unlike a naive speculation made 
previously [7], the-theoretical single-peaked OF is born via a normal bifurcation a t ~ c  = 0.8, 
so that it is expected to be stable at least near its bifurcation point, though convincing 
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evidence has not yet been obtained. The multi-branch entrainment was found to occur for 
E larger than about 0.6. 

Now let us examine the nature of mutual entrainment with an OF multi-peaked as found 
above. For this sake, we may recall in what way the OF governs the asymptotic behaviour 
of the system. As discussed elsewhere [6], we have in the limit t i 03 

(4) d@j/dt = Aj - €H(@j) ( j  = 1,. . . , N) 
where 11;. = ej - S2,t and Aj = S2j - s2,. Let us write the minimum and maximum of 
H ( 0 )  as H,,,in and H,,, respectively. Then, it is easy to see that only oscillators with Aj 
falling in between eH,,,in and cHmw get mutually entrained, each having a constant residual 
phase given by @j = H-’(Aj/c), where. it should be noted that dH(@)/d@ has to be 
positive for @ = @j on account of stability. With these points in mind, we now go on to 
see what happens microscopically when the OF is multi-peaked as in figure 2. Figure 4 is 
devoted to this subject: for convenience, snapshots of S2j versus @j are displayed, taken in 
the same runs as in figure 2. More than one branch of phase-locked oscillators is found 
to exist lying on curves showing S2, + EH(@), that is, curves on which every entrained 
oscillator has to settle for f -+ 00. It is therefore a multi-peaked OF that is responsible for 
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the appearance of the multiple branches of entrained oscillators. For comparison, a typical 
example of the snapshot in the 'normal' case (for details, see the caption) is given in figure 
5 ,  where only one branch of entrainment is found; to the best of the author's knowledge, 
previously studied entrainments are all of this type, including that observed in Kuramoto's 
model. Here, it is important to note that the fine smcture of entrainment depends on the 
initial condition. This problem will be considered in detail next. 

Both figures 2 and 4 give evidence of the coexistence of different entrained states 
characterized by almost identical OFs. For a majority of entrained oscillators, there is more 
than one stable branch on which each of them could be placed; the main differences among 
those states seem to come from which branch is chosen by each of those oscillators. Let us 
consider, in a'generalized context. how large the total number of such entrained states may 
be. Suppose that we have an entrained state such that H-' has m stable branches in an 
interval, say, I and let Ne denote the total number of oscillators with Aj /6  belonging to I ,  
where Ne is O(N) since the entrainment is macroscopic. If NJN is finite but sufficiently 
less than unity, then every possible rearrangement of such oscillators by changing their 
branches would cause no substantial deformation of H ( 8 )  (note the factor N-' in (2)), thus 
self-consistency is maintained with a new stable entrained state possessing almost the same 
OF as the one before the rearrangement. We may therefore expect that at least mNc - eN 
different entrained states coexist with almost undistinguishable OFs. For N + cc, this 
implies a supermulti-basin structure for phase space. Creation of a new'entiained state 
by changing the branches of some entrained oscillators is demonstrated in figure 6(a), 
which shows a snapshot a taken some time after all the oscillators' lying on part of branch A 
(0.1 < $2j < 0.12) in figure 4(a)  were transferred to another stable branch C without 
any other change made; a magnified view in figure 6(6) indicates that the transferred 
elements indeed remain on the new branch. Figure 6(c) displays OFs before and after 
the rearrangement; nothing changes drastically as expected. 

Coexistence of a large number of attractors is discussed in the literature for systems 
consisting of identical elements [IO], in which case permutation symmetry makes the 
occurrence of such a phenomenon almost trivial, and the estimate of the number of attractors 
is straightforward. What most distinguishes the present case from this is the fact that here 
the elements are not identical because of their characteristic frequencies. In such a case, 
the estimate mentioned above is, in general, difficult even at a semi-quantitative level, 

' 

Figure S. Example of single-bmch entrainment, 
where N = 1000 and c = 1.2 with h(0) equivalent 
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Figure 6. New entrained state created from the one 
displayed in figure 4(a) by a rearrangement of entrained 
oscillators in the mge shown in figure 4(4: (a)  
snapshot taken At = 180 afrer the r e m g e m e n t ;  (b) 

-0.5 0 0.5 its magnification; (c) new OF in comparison with the 
X old. 

but here the OF has made it possible to some extent. Without the frequency dispersal, 
model (1) is known to exhibit a phenomenon called 'clustering' when h(0) includes higher 
harmonic components [Ill.  Although irrelevant to mutual entrainment per se, it may have 
a connection with the above phenomenon. 

The self-consistent equation of H ( 8 )  derived previously [6] cannot be employed for 
the purpose of analysing multi-branch entrainments. Is it then possible to generalize it 
for that purpose? Actually, this is seemingly quite easy: suppose that H ( 0 )  is shaped as 
shown in figure 7, and write the density of oscillators on the Ith stable branch as pi(R); 
then, by definition, pl(L-2) = 0 for L-2 < Re + E H ( X J  and Q > Re + E H ( & )  and also 
E;"=, p,(Q) = f (L-2)  for Q, + c Q c Q, + EH,,,,. Following [6], we can find 

w e )  = - E ~ S Y I d g p l ( R , + E H ( g ) ) H ' ( * ) h ( *  I=I x, - e )  

where C(A) = l /J id@/(A - e H ( $ ) ) .  This equation does not appear quite tractable 
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Figure I. Fully generalized form of H (0) with Xi  and Yi locating its local minima and maxima, 
respectively. 

because of the entry of pj(n), but its analysis may reveal, for example, conditions on h(6)  
(and f(C2)) for the OF to become multi-peaked. Some attempts will be made elsewhere. 

To summarize, a new mode of mutual entrainment, multi-branch entrainment, in globally 
coupled phase oscillators has been reported and its nature has been discussed in  the light 
of the order function, whose crucial role should be noticed in understanding both the 
mechanism of that entrainment and the associated supermulti-basin structure in phase space. 
This phenomenon originates from strongly modulated coupling which may possibly appear 
in assemblies of highly nonlinear oscillators; experimental efforts towards discovering multi- 
branch entrainment may be rewarding for such systems. 

This work is supported by a Grant-in-Aid from the Ministry of Education, Science, and 
Culture (no 06835020). 

References 

[I] Winfree A T 1980 The C e o m f v  of Biological Zme (New York Springer) 
[2] Kumoto  Y 1984 Chemical Oscrllalioas, Waves, and Turbulence (Berlin: Spn’nger) 
I31 Kumoto Y 1975 Pmc. Int. Sy”. on Mathemutical Problem in Theheomticnl Physim ed H Anki (New York 

141 Daido H 1990 J. Stat. Phys. 60 753 
[5] Strogatz S H and Mirollo R E  1991 f. Stat. Pkys. 63 613 
[6] Daido H 1992 Pros. Theor. Phys. 88 1213 
[7] Daido H 1993 Pros. Theor. Phy* 89 929 
[SI Dnido H 1994 Phys. Rev. Lett. 13 760 and to be published 
[9] Daido H 1993 Physic= 69D 394 
[IO] Wiesenfeld K and Hadley P 1989 Phyr. Rev. Len. 62 1335 
[ I l l  Okuda K 1993 PhyJicu 63D 4’24 

Springer) 


